Inhalt
              
                
                  
                    [ 536DASCDSPU19 ]                                         UE                                         (*)Digital Signal Processing
                   | 
                 
                
                   | 
                  
                    
                                       | 
                 
                | Es ist eine neuere Version 2025W dieser LV im Curriculum Masterstudium Polymer Engineering and Science 2025W vorhanden. |                  
                   | 
                 
                                
                                
                  | (*)  Leider ist diese Information in Deutsch nicht verfügbar. | 
                 
                                
                    | 
                  
                    
                      | Workload | 
                                            Ausbildungslevel | 
                      Studienfachbereich | 
                                            VerantwortlicheR | 
                                                                  Semesterstunden | 
                                            Anbietende Uni | 
                     
                    
                      | 1,5 ECTS | 
                                            
                      B3 - Bachelor 3. Jahr | 
                      Artificial Intelligence | 
                                                                  
                          Mario Huemer                       | 
                                               
                                            1 SSt | 
                                            Johannes Kepler Universität Linz | 
                     
                    | 
                 
                
                   | 
                 
                                
                    | 
                  
                      
                      
                      
                      
                      
                      
                      
                        
    					  
    					  
  						
                    
                      | Detailinformationen | 
                     
                                
                    
                      | Quellcurriculum | 
                      Bachelorstudium Artificial Intelligence 2022W | 
                     
                      
                    
                      | Ziele | 
                      (*)Students know and understand the basics of analog as well as discrete-time signals and systems qualitatively and mathematically and can apply them to fundamental problems. They are able to 
- plot signals in time- and frequency domain,
 - explain the sampling theorem,
 - apply the convolution operation,
 - derive the spectrum of a signal numerically with the help of the DFT and the FFT,
 - describe the behavior of discrete-time LTI systems in time- and frequency domain, 
 - analyze and design digital FIR and IIR filters, and 
 - apply the correlation operation.
 
 Students know and understand the basics of adaptive filters, and the basics of time-frequency analysis.
  | 
                     
                      
                    
                      | Lehrinhalte | 
                      (*)- Basics of Analog Systems Theory
 - Discrete Time Signals Fundamentals
 - Discrete Time LTI Systems Fundamentals
 - Fourier Transform of Discrete Time Signals (DTFT)
 - Sampling and Reconstruction
 - Correlation
 - Spectral Analysis of Discrete Time Signals (DFT, FFT, Short Time Fourier Transformation, Applications)
 - z Transform
 - Digital Filters (FIR, IIR)
 - Vector Matrix Representations of Discrete Time Signals and LTI Systems
 - Adaptive Filters
 
  | 
                     
                                                            
                    
                      | Beurteilungskriterien | 
                      (*)Homework to be uploaded and evaluated
 | 
                     
                       
                    
                                 
                    
                      | Lehrmethoden | 
                      (*)- Demonstration of examples
 - Matlab examples
 - Homework
 
  | 
                     
                                     
                    
                      | Abhaltungssprache | 
                      Englisch | 
                     
                      
                    
                      | Literatur | 
                      (*)- Lecture Slides
 - Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing: Pearson New International Edition, Pearson Education Limited 2014.
 
  | 
                     
                      
                    
                      | Lehrinhalte wechselnd? | 
                      Nein | 
                     
                      
                    
                     
                    
                    
                     | 
                 
                 
                
                   | 
                 
                
                    | 
                  
                    
                    
                    
    				  
    				  
  					
                    
                      | Präsenzlehrveranstaltung | 
                     
                         
                    
                        | Teilungsziffer | 
                      35 | 
                          
                    
                      | Zuteilungsverfahren | 
                      Direktzuteilung | 
                     
                    
                     
                    
                    
                     | 
                 
                                
                                
                                
                               
              | 
            
                   
       
     |