[ 536MLPEMSTU19 ] UE (*)Machine Learning: Supervised Techniques

(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS B2 - Bachelor 2. Jahr Informatik Johannes Kofler 1 SSt Johannes Kepler Universität Linz
Quellcurriculum Bachelorstudium Artificial Intelligence 2021W
Ziele (*) This practical course complements the lecture "Machine Learning: Supervised Techniques" and aims at practicing the concepts and methods acquired in the lecture.
Lehrinhalte (*)
  • Basics of classification and regression
  • Evaluation of machine learning results (confusion matrices, ROC)
  • Under- and overfitting / bias and variance
  • Cross-validation and hyperparameter selection
  • Logistic regression
  • Support vector machines and kernels
  • Neural networks and deep networks
  • Time series (sequence) analysis
  • Bagging and boosting
  • Feature selection and feature construction
Beurteilungskriterien (*)Assignments during the semester plus final exam
Lehrmethoden (*)Students are given assignments in 1-2 week intervals. Homework must be handed in. Results are to be presented and discussed in the course.
Abhaltungssprache Englisch
Literatur (*)Assignments and homework submissions are managed via JKU Moodle. Where necessary, complimentary course material is provided for download.
Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)Until term 2019S known as: 875BIMLMSTU16 UE Machine Learning: Supervised Techniques
until term 2016S known as: 675MLDAMSTU13 UE Machine Learning: Supervised Techniques
Teilungsziffer 35
Zuteilungsverfahren Direktzuteilung