|  | 
                        
    					  
    					  
  						
                    
                      | Detailed information |  
                      | Original study plan | Bachelor's programme Technical Mathematics 2009W |  
                      | Objectives | Conveying of important topics in the theory of splines |  
                      | Subject | Kapitel 1. Introduction 
 Kapitel 2. Prologue
 Best Approximation
Interpolation of functions
Divided Differences
Total Positivity of Matrices
 
 Kapitel 3. Polynomial functions
 Defintions
Inequalities of Bernstein, Szegö and Markov
Lp -Norms of polynomials
Degree of Approximation of Polynomials
 
 Kapitel 4. 1D Spline functions
 piecewise linear functions
piecewise polynomials
B-Splines
Dual Funktionals to B-Splines
Degree of Approximation of Spline functions
Refining knot sequences
Collocation
 
 Kapitel 5. Higher dimenional spline functions
 Definitions and simple properties
Recursion formulae
Examples
 |  
                      | Criteria for evaluation | Oral exam at the end of the semester |  
                      | Methods | Blackboard talk combined with lecture notes |  
                      | Language | German |  
                      | Study material | [1] H. B. Curry and I. J. Schoenberg. On Pólya frequency functions. IV. The fundamental spline functions and their limits. J. Analyse Math., 17:71–107, 1966. 
 [2] C. de Boor. Splinefunktionen. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1990.
 
 [3] S. Demko. Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal., 14(4):616–619, 1977.
 
 [4] R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin,1993.
 
 [5] L. L. Schumaker. Spline functions: basic theory. Cambridge Mathematical Library. Cambridge University
 
 [6] A. Y. Shadrin. The L∞ -norm of the L2 -spline projector is bounded independently of the knot sequence:
a proof of de Boor’s conjecture. Acta Math., 187(1):59–137, 2001.
 |  
                      | Changing subject? | No |  |