Inhalt

[ TM1WGVOVARI ] VL Calculus of variation

Versionsauswahl
Es ist eine neuere Version 2022W dieser LV im Curriculum Master's programme Mathematics for Natural Sciences 2022W vorhanden.
Workload Education level Study areas Responsible person Hours per week Coordinating university
3 ECTS B3 - Bachelor's programme 3. year Mathematics Paul Müller 2 hpw Johannes Kepler University Linz
Detailed information
Original study plan Bachelor's programme Technical Mathematics 2009W
Objectives Mastering of the central techniques concerning the direct methods of calculus of Variations and critical point methods. Applications to (systems of) Euler Lagrange Equations ( linear or non linear)
Subject
  • Euler Lagrange Equations
    • Variational Integrals
  • Weak lower semicontinuity
    • Existence of weak solutions
    • Minimization with Constraints
    • Moutain Pass theorem,
  • Palais Smale conditions
  • Polyconvexity and non linear elasticity
Criteria for evaluation exam
Methods Real and Functionalanalysis Geometric Measure Theory
Language German
Study material Mueller/Pönitz Skriptum Variationsrechnung
M. Struwe, Variational Methods
L. Evans, PDE.
Changing subject? No
On-site course
Maximum number of participants -
Assignment procedure Direct assignment