  | 
                  
                      
                      
                      
                      
                      
                      
                      
                        
    					  
    					  
  						
                    
                      | Detailed information | 
                     
                                
                    
                      | Original study plan | 
                      Bachelor's programme Technical Mathematics 2009W | 
                     
                      
                    
                      | Objectives | 
                      Conveying of important topics in the theory of splines
 | 
                     
                      
                    
                      | Subject | 
                      Kapitel 1. Introduction
  
Kapitel 2. Prologue
- Best Approximation
 - Interpolation of functions
 - Divided Differences
 - Total Positivity of Matrices
  
 
 Kapitel 3. Polynomial functions
 - Defintions
 - Inequalities of Bernstein, Szegö and Markov
 - Lp -Norms of polynomials
 - Degree of Approximation of Polynomials
  
 
 Kapitel 4. 1D Spline functions
 - piecewise linear functions
 - piecewise polynomials
 - B-Splines
 - Dual Funktionals to B-Splines
 - Degree of Approximation of Spline functions
 - Refining knot sequences
 - Collocation
  
 
 Kapitel 5. Higher dimenional spline functions
 - Definitions and simple properties
 - Recursion formulae
 - Examples
 
  | 
                     
                                                            
                    
                      | Criteria for evaluation | 
                      Oral exam at the end of the semester
 | 
                     
                       
                    
                                 
                    
                      | Methods | 
                      Blackboard talk combined with lecture notes
 | 
                     
                                     
                    
                      | Language | 
                      German | 
                     
                      
                    
                      | Study material | 
                      [1] H. B. Curry and I. J. Schoenberg. On Pólya frequency functions. IV. The fundamental spline functions and their limits. J. Analyse Math., 17:71–107, 1966.
  
[2] C. de Boor. Splinefunktionen. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1990.
  
[3] S. Demko. Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal., 14(4):616–619, 1977.
  
[4] R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin,1993.
  
[5] L. L. Schumaker. Spline functions: basic theory. Cambridge Mathematical Library. Cambridge University
  
[6] A. Y. Shadrin. The L∞ -norm of the L2 -spline projector is bounded independently of the knot sequence:
a proof of de Boor’s conjecture. Acta Math., 187(1):59–137, 2001.
 | 
                     
                      
                    
                      | Changing subject? | 
                      No | 
                     
                      
                    
                     
                    
                    
                     |